News & Events

Advanced Oxidation Processes (AOPs) for the degradation of Environmental Pollutants:

AOPs make use of the involvement of a highly oxidizing species like hydroxyl radical and its subsequent oxidative degradation reaction with organic water pollutants (mainly pharmaceuticals and personal care products (PPCPs), pesticides, and substituted phenols). The main AOPs include Ultrasound, Fenton, photolysis (UV & VIS), photocatalysis using TiO2 and radiolysis are generally being used. In addition, Zerovalent iron nanoparticle is yet another system used for similar degradation studies. The kinetics of reaction and the spectroscopic investigation of the short lived intermediate radicals in all these reactions are monitored by Pulse radiolysis technique. The stable intermediate and final products of the degradation are monitored by HPLCs, LC-MS, UPLC-Q-TOF-MS etc. The extent of mineralisation are being studied by TOC and IC.

Scanning of Emerging Pollutants in water and soil:

Emerging pollutants include pesticides, pharmaceuticals and personal care products (PPCPs), nanoparticles etc. Our present work involves the scanning of pesticides and many of the pharmaceutically active compounds (antibiotics and veterinary medicines) in backwaters and rivers in Kerala. Most of the scannings are being performed using high resolution mass spectrometry. Some of the pesticides in soil matrix are also monitored using this technique.

Air Pollution Monitoring:

Air pollution monitoring is another thrust area of the group. This involves the detection and quantification of various oxides of sulphur, nitrogen, and carbon, Volatile Organic Compounds (VOCs), particulates, toxic metals etc. Both extraction methods and direct sampling method (thermal desorption technique) coupled with GC-MS and LC-MS are utilised as experimental tools.

Development of nano-membrane based Environmental Sensors for pollutants:

Nanomembrane fabricated from biopolymers that have intrinsic fluorescence can sense air pollutants such as hydrogen peroxide upto pico molar concentrations. Ovalbumin immobilized nanomembranes is too promising in sensing mercury and nitro compounds as well.

Membrane technology for water purification:

Multilayer nano-membranes (biodegradable synthetic membranes) are prepared using polyelectrolytes. Textile and papermill effluents can be treated with such membranes for removing color and COD. This is expected as a superior technology compared conventional methods

Radiation and Photo- induced modifications of DNA and related compounds:

The genetic material, DNA, undergoes constant damages due to both internal and external factors. It undergoes nearly 10,000 damages in human body every day. Radiation induced damages are due to direct deposition of energy and to indirect effect from water derived free radicals. We investigate the damage induced by both low LET and high LET radiation using steady state and pulse radiolysis techniques. Photochemical changes are also being studied. Charge transport in DNA is another important phenomena which is extensively being investigated in our group using Femtosecond spectroscopy.

Computer based theoretical calculations for free radical reactions:

A great deal of information on the probable reaction sites and energy channels in the free radical chemistry of organic compounds can be obtained using Density Functional Theory (DFT) based theoretical calculations. The DFT calculations are carried out with Gaussian 03 suite of programs by employing B3LYP method using the 6-31+G(d,p) basis set.

Experimental tools :

Pulse radiolysis, Laser flash photolysis, Time-resolved spectroscopy, Steady state radiolysis and photolysis, HPLC, HPTLC and other chromatographic techniques, UV-VIS spectrometry, GC-MS, LC-MS, LC-Q-TOF-MS, Highcomputing systems etc


  1. M. Sunil Paul, U. K. Aravind, G. Pramod, A. Saha, and C. T. Aravindakumar, Hydroxyl Radical Induced Oxidation of Theophylline in Water: A Kinetic and Mechanistic Study,Org. Biomol Chem. 2014, 12 (30), 5611 - 5620
  2. Mathew, S. Sreedhanya, P. Manoj, C. T. Aravindakumar and Usha K. Aravind Exploring the interaction of bisphenol-S with serum albumins: A better or worse alternative for bisphenol-A?, J. Phys. Chem. B., 2014, 118 (14), 3832–3843
  3. Olvera-Vargas, N. Oturan, C. T. Aravindakumar, M. M. Sunil Paul, V.r K. Sharma, M. A. Oturan, Electro-oxidation of the Dye Azure B: Kinetics, mechanism and by-products, Environ. Sci. Pollut. Res.2014, 21(14), 8379-8386
  4. Sreekanth, Sunil Paul M. M, Usha K. Aravind, J.L.Marignier, J.Belloni, C. T. Aravindakumar, Oxidation reactions of hydroxy naphthoquinones: Mechanistic investigation by LC-Q-TOF-MS Analysis,Int. J. Radiat. Biol., 2014, 90(6), 495-502.
  5. B. Shibin, R. Sreekanth, Usha K. Aravind, K.M. Afsal Mohammed, N.V. Chandrashekhar, Jayan Joseph, S. K. Sarkar, D.B. Naik and C.T. Aravindakumar, Radical chemistry of glucosamine naphthalene acetic acid and naphthaleneaceticacid: A pulse radiolysis study, J.Phys.Org. Chem.,2014, 27( 6), 478–483
  6. Shoniya Thomas, R. Sreekanth, V.A. Sijumon, Usha K Aravind and C.T. Aravindakumar, Oxidative Degradation of Acid Red 1 in Aqueous Medium,  Eng. J.,2014, 244, 473–482
  7. K. Nejumal, P.R. Manoj, Usha K. Aravind, C.T. Aravindakumar, Sonochemical Degradation of a Pharmaceutical Waste, Atenolol, in Aqueous Medium, Environ. Sci. Pollut. Res., 2014,21, 4297-4308
  8. Sreekanth, K.P. Prasanthkumar, M.M. Sunil Paul, Usha K. Aravind,, C.T. Aravindakumar, Oxidation Reactions of 1- and 2-naphthols: An Experimental and Theoretical Study, J. Phys. Chem. A., 2013,117, 11261–11270
  9. V. Divyalakshmi, S. Sreedhanyaa, G. Akhil, C. T. Aravindakumar and Usha K. Aravind, Sub-picomolar sensing of hydrogen peroxide with ovalbumin embedded CHI/PSS multilayer membrane, Analytical Biochemistry, 2013,440, 49-55
  10. P. Prasanthkumar, C. H. Suresh, C. T. Aravindakumar, Dimer Radical Cation of 4-thiouracil: A pulse radiolysis and theoretical study, J. Phys. Org. Chem., 2013,26, 510-516
  11. Venu, D.B. Naik, S.K. Sarkar, Usha K. Aravind A.Nijamudheen, C.T.Aravindakumar, Oxidation Reactions of Thymol: A Pulse Radiolysis and Theoretical Study, J. Phys. Chem. A., 2013,117, 291–299
  12. M. Sunil Paul, Usha K. Aravind, G. Pramod, C.T. Aravindakumar,Oxidative Degradation of Fensulfothion by Hydroxyl Radical in Aqueous Medium, Chemosphere, 2013,91, 295–301
  13. P. Prasanthkumar, C. H. Suresh and C. T. Aravindakumar, Oxidation Reactions of 2-thiouracil: A Theoretical and Pulse Radiolysis Study,J. Phys. Chem. A. 2012 116 , 10712–10720
  14. J. Disha, C.T. Aravindakumar, Usha K.Aravind, Phosphate recovery by high flux low pressure multilayer membranes, Langmuir, 2012,28, 12744–12752
  15. Jissy Mathew, S. Sreedhanya, M.S. Baburaj, C.T. Aravindakumar, U.K. Aravind, Fabrication of switchable protein resistant and adhesive multilayer membranes, Colloids and Surfaces B: Biointerfaces, 2012,94, 118-24
  16. S. Baburaj, C.T. Aravindakumar, S. Sreedhanya, A.P. Thomas, Usha K. Aravind, Treatment of model textile effluents with PAA/CHI and PAA/PEI composite membranes Desalination, 2012,288, 72–79
  17. K. Aravind, B. George, M.S. Baburaj, S. Thomas, A.P. Thomas, C.T. Aravindakumar, Treatment of industrial effluents using polyelectrolyte membranes, Desalination,2010, 252, 27–32
  18. P. Prasanthkumar, Hari Mohan, G. Pramod, C. H. Suresh, and C. T. Aravindakumar, Anomalous reaction of oxide radical ion with 5-azacytosines: An experimental and theoretical study, Chem. Phys. Lett.,2009, 467, 381-386
  19. Manoj, Chang-Ki Min, C.T. Aravindakumar, T. Joo, Ultrafast charge transfer dynamics in 2-aminopurine modified double helical DNA, Chem. Phys.2008, 352, 333-338
  20. Jissy Mathew, C.T.Aravindakumar and Usha K Aravind Effect of ionic strength and protein concentration on the transport of proteins through chitosan/polystyrene sulfonate multilayer membrane,  Membr. Sci.2008, 325, 625-632
  21. Rani Varghese, Usha K. Aravind and Charuvila T. Aravindakumar, Fenton-Enhanced g- Radiolysis of Cyanuric acid, Hazardous Materials 2007, 142, 555-558
  22. K. Aravind, J. Mathew and C.T. Aravindakumar, Transport studies of BSA, lysozyme and ovalbumin through chitosan/polystyrene sulfonate multilayer membrane, J. Membr. Sci.299, 146-155, 2007
  23. Pramod, K.P. Prasanthkumar, Hari Mohan, V.M.Manoj, P.Manoj, C.H.Suresh, and C.T. Aravindakumar, Reaction of Hydroxyl radicals with Azacytosines: A Pulse Radiolysis and Theoretical Study, J. Phys. Chem. A.2006; 110, 11517 – 11526
  24. Rani Varghese, Hari Mohan, P. Manoj, V. M. Manoj, Usha K. Aravind, K. Vandana and C. T. Aravindakumar,On the Reactions of Hydrated Electrons with Triazine Derivatives in Aqueous Medium,  Agric. Food Chem. 2006; 54, 8171 - 8176
  25. M. Manoj, H. Mohan, U. K. Aravind1 and C.T.Aravindakumar, One-Electron Reduction of S-Nitrosothiols in Aqueous Medium, Free Rad. Biol. Med.2006, 41, 1240-1246
  26. M. Manoj and C.T. Aravindakumar, Oxidative and reductive decomposition of S-nitrosothiols, Nitric oxide-Biology and Chemistry.,2004, 11(1), 53
  27. A. Larsen, O.J.G. Somsen, I.H.M. van Stokkum, F.L. de Weerd, M. Vengris, C.T. Aravindakumar, R. van Grondelle, N.E. Geacintov and H. van Amerongen, Ultrafast spectroscopy on 2-aminopurine DNA oligonucleotides provides new insights into mechanism of fluorescence quenching Biophys. J.2004, 86(1), 312A-312A Part 2 Suppl. S
  28. A. Jacob, H.Mohan, D.Hugo, T.L.Luke, V.M.Manoj, P.Manoj, J.P.Mittal, M.R.Hoffmann and C.T.Aravindakumar “Properties of the OH-adducts of hydroxy, methyl, methoxy and amino substititued pyrimidines:Their transformation reactions and end product analysis” J. Phys. Chem. A.,2002, 106, 2489-2496
  29. T. Aravindakumar, M.De Ley and J.Ceulemans, “Kinetics of the anaerobic reaction of NO with cysteine, glutathione and cysteine containing proteins: Implication for in vivo nitrosation” J. Chem. Soc.Perkin Trans. 2,2002, 663 – 669
  30. Manoj, Rani Varghese, V.M. Manoj and C. T. Aravindakumar, “Reaction of Sulphate Radical Anion (SO4•-) With Cyanuric Acid: A Potential Reaction For Its Degradation?” Chem. Lett.,2002, 74-75
  31. A. Theruvathu, C.T.Aravindakumar, R.Flyunt and J.von Sonntag and C.von Sonntag,“Fenton chemistry of 1,3-dimethyl uracil” J. Am. Chem. Soc. 2001, 123, 9007-9014
  32. M. Joseph, T.L.Luke, U.K. Aravind and C.T. Aravindakumar, “Photochemical production of hydroxyl radical from aqueous Fe(III)-hydroxy complex: Determination of its reaction rate-constants with some substituted benzenes using TBA-assay method”Water Environ. Res. 2001, 73, 243-247
  33. M. Manoj and C.T.Aravindakumar, “Hydroxyl radical induced decomposition of S-nitrosoglutathione” Chem. Commun.2000, 2361-2362 2361-2362.
  34. T. Aravindakumar, J. Ceulemans and M. De Ley,“Steric effect and effect of metal coordination on the reactivity of nitric oxide with cysteine-containing proteins under anaerobic conditions”, Biophys. Chem. 2000, 85(1), 1-6
  35. T. Aravindakumar, J. Ceulemans and M. De Ley,“Nitric oxide induces Zn2+ rlease from metallothionein by destroying zinc-sulfur clusturs without concomitant formation of S-nitrosothiol”, Biochem. J. 1999, 344, 253-258